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Abstract |

We have derived stability results for high-order finite difference approximations of mixed
hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained
using summation by parts and a new way of representing general linear boundary con-
ditions as an orthogonal projection. By rearranging the analytic equations slightly we
can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our
technique so as to yield strict stability on curvilinear non-smooth domains in two space
dimensions. Finally, we show how to incorporate inhomogeneous boundary data while re-
taining strict stability. Using the same procedure one can prove strict stability in higher
dimensions as well.






1 Introduction

When solving a partial differential equation numerically it is necessary to have some bound
of the growth rate of the solution, since otherwise round-off errors could grow arbitrarily
fast. This upper bound can be established by ensuring some kind of stability. We have
elected to use the energy method, because it can be applied to the continuous as well as
the discrete model. Furthermore, it can be applied to general domains, which is important
when studying multidimensional problems.

Stability of the continuous problem is established by means of an integration-by-parts
procedure introducing boundary terms, some of which must be eliminated to ensure sta-
bility. For the finite difference model integration by parts is replaced by summation by
parts. This amounts to designing the discrete difference operator ensuring that, in ad-
dition to the accuracy requirements, certain conditions of antisymmetry are met. As a
consequence, the common problem of finding proper "numerical” boundary conditions
will be eliminated; they will be built in the discrete difference operator.

The analytic boundary conditions are yet to be incorporated. We propose a certain
projection operator, which interacts with the difference operator so as to generate bound-
ary terms that are completely analogous to those of the continuous problem. This can be
done for any type of linear boundary conditions. Thus, an energy estimate is obtained
for the discrete problem, provided there is one for the analytic model. This conclusion
remains true for domains in several space dimensions, even if the boundary is non-smooth.
Furthermore, using this projection operator allows us to derive stability results for a larger
class of finite difference operators than those considered in [5]. Stability will be proved
for high-order finite difference approximations of mixed hyperbolic-parabolic variable co-
efficient systems subject to general inhomogeneous boundary conditions. )

1.1 An Introductory Example

To illustrate the underlying principles of the energy method we consider the convection-

diffusion equation
U = Ugz + Uz, € (0,1) >0
u(z,0) = f(z)
u(0,t) =0
uz(lvt) = g(t)

In the sequel we shall use the standard L?-scalar product

1
(u,v)=/ uvdz
0

with the corresponding norm defined as ||u||* = (u,u).

We can obtain an a priori estimate for this example using the following tools.
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(1) Integration by parts:
d 2 2 1
L ul® = 20 ) + 20, 00) = 2l + 2, 02) + 20

(i1) Boundary conditions:

d
Il = —2f|uz[* + 2(u, uz) + 2u(1,1)g(1,1)
(iii) Cauchy-Schwarz inequality:

2l < ~2lfuel?+ 2lfull ]| + 2(1, 91,1

(iv) Algebraic inequality:
2zy| < ex? + ey’
implies (e = 1)
d . o2 2 2 2 2
Sl < =Juel* + [ul]” +u(1,8)" + (1, 1)
(v) Sobolev inequality:
lul < elluel® + (7 + Dl[ull®

is used to eliminate u(1,t) (e = 1)
d 2 2 2
< ull® < 3ljull + 91,1
which can be solved analytically to yield
¢
1 < e (1717 + [ g(ry?ar)
If we are to obtain such an estimate for a system of equations we will also need

(vi) The adjoint of A:
(u, Av) = (ATu,0)

Summing up, the energy method boils down to the six basic “tools” above. In the subse-
quent sections we shall see how these principles can be modified so as to give an energy
estimate for the semi-discrete system.



2 General Principles for the Semi-discrete Case

In this section the basic principles of the energy method will be transferred to the semi-
discrete case. Furthermore, a number of lemmas, which will be needed later, will be
proved. Throughout this section grid vectors will be denoted by v7 = (v ... vT), v; € R*.
Difference operators approximating @/dz will be designated by

: dool ... do, 1

D= IERdxd

dol ... 4,1

where D is written as a square matrix for convenience; in reality D will be a banded
matrix, where the bandwidth is independent of the mesh size h = L/v.

2.1 Summation by Parts

In the semi-discrete case we employ summation by parts instead of integration by parts.
The basic idea is to use difference operators satisfying

(u, Do), = uTv, — ulveg — (Du,v), (1)

with respect to a weighted scalar product

1
(w,v)p =k Y oijulv;
i.7=0

It should be remarked that the usual Euclidean scalar product cannot be used. To prove
the existence of summation by parts, it suffices to consider scalar products on the form

»(1)
Y= I , v® ¢ R(n+l)dX(r:+l)d, [=1,2 (2)
7(2)

where the blocks of ¥ are given by Z;; = oi;1,1 € R™%, r; and the elements of %0,
[ =1,2 are independent of k. The following existence proof can be found in [5].

Proposition 2.1 There ezist scalar products (2) and difference operators D of accuracy
2p — 1 at the boundaries and 2p in the interior, p > 0, such that the summation-by-parts
property (1) holds.

Confining ourselves to the case where ©(!) and £(? are diagonal we have the following
existence theorem [4].



Proposition 2.2 There ezist diagonal scalar products (2) and difference operators D of
accuracy p at the boundaries and 2p in the interior, 1 < p < 4, such that the summation-
by-parts property (1) holds.

Remark: If one omits the requirement that the boundary stencils be at least accurate
of order p for a given interior accuracy 2p, it is possible to prove summation by parts for
diagonal scalar products and difference operators D of arbitrary order of accuracy [7]. For
a given boundary accuracy p, however, it may be necessary to resort to interior stencils
of accuracy ¢ > 2p, which may render these operators useless in practice.

The actual computation of the operators above is ill-conditioned, since it involves the
solution of a rank-deficient problem. Using a symbolic language it is possible to solve
for D exactly, the elements of which in general will depend on one or more parameters.
Explicit examples can be found in [6]. For details on the algorithms we refer to [8]. The
simplest example is furnished by

-1 1
1 -05 0 0.5
D = Z " ‘. (3)
-05 0 05
-1 1
with the corresponding scalar product
0.5
1
T=h (4)
1
0.5

Summation by parts can be generalized to several space dimensions if we restrict our-
selves to diagonal norms. To simplify the notation we consider only the two-dimensional
case. A general proof is given in [6]. The grid function w;; is partitioned as u? =

(ul ... ul), ul = (uf;...ul,), 7 =0,..., 1. Define the weighted scalar product as

(u,v)h = hZZoiajuiij,-j (5)
1=0 j=0

where we have assumed the same number of grid points in both dimensions for conve-
nience only; A = hyhy is the cell area. Let D; and D, denote the difference operators
approximating d/0z, and 3/0z;. Define

1
(Dyu);; E diur;  (Dau)i; = — Y dikuik (6)

lk =0 h2k=0



where it is assumed that the o’s and d’s satisfy (1). Hence
v 14 v
(u, Dro)p = h2 ) 0 (Z oy dik”kj)
j=0 =0 k=0

and a similar expression holds for (u, Dyv),. The parenthetical expression satisfies (1) for
each j. We thus arrive at

Proposition 2.3 Let the discrete difference operators Dy and D; be defined by (6). Sum-
mation by parts then holds in both dimensions

v v
(u, D1v)p = hy Zajuzjv,,j — hy Zajugjvoj — (Dyu,v)y

=0

=0
(u, Dav)p = Zaiuiv;,, —h Zaiug(;vio —(Dau,v),
=0 1=0
where (-, ) is defined by (5).

Remark: This is the discrete counterpart of the two-dimensional divergence theorem.
With a general domain ) we assume that there is a smooth map £ = £(z) taking Q
onto the unit cube where proposition 2.3 can be applied. The assumption of such a
map £ is necessary in order for finite difference methods to apply to curvilinear domains.
Consequently, integration by parts can always be replaced with summation by parts in
the discrete case. It is presently unknown if it possible to obtain the summation-by-parts
property in more than one dimension using non-diagonal norms.

2.2 Projections

Suppose that the model equation of section 1.1 were discretized as

v, = D*v + Dv
v(0)=f

where we have assumed homogeneous Neumann data for convenience; it will be shown
later how to treat inhomogeneous boundary conditions. For every fixed h the problem
above is a constant coefficient ODE system with a unique analytic solution. Consequently,
there is little hope that the discretized boundary conditions ve(t) = (Dv),(t) = 0 are
fulfilled, since they have not been accounted for so far.

(7)

Denote by V C R**! the vector space where vo(t) = (Dv),(t) = 0, and let P be a
projection of v onto V. Multiplying (7) by P yields

(Pv). = P (D + Dv)
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Any solution satisfying the boundary conditions must obey v = Pv, whence
vy=P (Dzv + Dv)

Conversely, we have

Proposition 2.4 Let P € R**® be a given projection independent of t, and suppose that
~ v(t) € R® is a solution of the non-linear ODE system

v; = PR(t,v) + (I — P)g
v(0) = f

where f satisfies f = Pf + (I — P)g(0). Then
o(t) = Pot) + (I — P)g(t), ¢>0

(8)

Proof:
Since P is independent of ¢, premultiplication of (8) gives (P? = P)

(Pv): = PR(t,v)
Using this equality in (8) implies
vy = (Pv+ (I — P)g)
Hence, by integration,

(I = P)(v(t) — g(t)) = (I = P)(f = ¢(0))

 which proves the proposition. O

Remark: g(t) represents the boundary data, and (/ — P)(v — g) = 0 is the extension of
(I — P)v = 0 to inhomogeneous boundary data. Proposition 2.4 thus tells us that any
solution to (8) will satisfy the boundary conditions if the initial data do so.

In general P is not uniquely defined. Consider the vector space V = {v € Rty =
0,v, = v,—1}. Then

both imply Pv € V. To shed some light on how to choose P, we apply the energy method
to (7)

d 2 2

4 1ol = 2(v, P(D% + Do)

6



If P were self-adjoint w r t (-, )z, then
4. e 2 2
dt”th = 2(Pv, D*v + Dv), = 2(v, Dv + Dv),

where the last equality follows from proposition 2.4. The crucial condition to obtain this
equality is expressed by
(u, Po)p = (Pu,v)x (9)

which states that P is an orthogonal projection (using the weighted scalar product (-,)).

Suppose that u(z,t) € R, z € R" is a solution to

u = F(z,t,0)u z€Q
L(z,0)u=0 z€eTl

where 0 denotes the n-dimensional gradient; I' is the boundary of Q. This system is
discretized in space, possibly requiring a coordinate mapping onto the unit cube

vy = PG(t, D)v
The projection P should be such that v fulfills
LTy =0

where L now represents a discretization of the analytic boundary conditions. Let V =
{v € R™|LTv = 0}. According to the preceding discussion P is taken to be the orthogonal
projection onto V (with respect to (-,-);). The boundary conditions can be written as

QTSv =0

where Q = Y7'L. Hence, the boundary conditions are fulfilled for all vectors v that
are orthogonal to the column space of @, the orthogonal projection onto which reads
Q(RQTEQ)'QTL. In case ¥ = I this is the standard projection. The desired boundary
projection is thus given by

P=1-Q(QTsQ)'Q"x

or

P=1-S'L(LTe L)' LT (10)

Remark: In order for the projection to be well-defined the inverse of L7X~! L must exist,
which follows iff L has full column rank. The latter will follow from assumptions on the
analytic boundary conditions (consistency arguments).

Proposition 2.5 Suppose that L has full column rank, and let P be defined by (10).
Then

(i) PP=P



(ii) P = PTS

(iii) v=Pv < LTv =0

Proof:
All statements are immediate consequences of (10). o

Remark: The second statement of proposition 2.5 is equivalent to (9).

2.3 A Discrete Sobolev Inequality

As seen in section 1.1 it is necessary to have a Sobolev inequality. The following proposi-
tion shows that there is a discrete Sobolev inequality for the norms that we are interested
in. We present it in a form suitable for proving strict stability.

Proposition 2.6 Let ||- ||z and D be defined by (2) and (1),respectively. Then
[ofz < ell Dol + (€7 + 1+ O(R)) IIvll}

where € > 0.

Proof:
Choose k,! such that
|vk|? = min; (Jv;]?)
lui? = max; (Jo;|*) = |v]%

Eq. (2) implies that

v—ra

]2 > h (Mo + do®P) + 2 3 vy

J=r1+1

where A; ; > 0 are the smallest eigenvalues of (1.2 Note that A, ; are independent of A.
Hence

Il 2 (1= A (ri(1 = M) + 721 = X)) [ox[?

where we have used hv = L = 1. If ¢ = ry(1 — A1) + r2(1 — Az) < 0 one immediately gets
luk|? < ||v]|3. Otherwise we choose h such that hc < 1. Hence

[

l—hoC (11)

luk]? <

<= llul < (1 + Kh)oll} K =

for h < hg, where hq is a fixed number such that hoc < 1.



Next, we define a family of norms, which is obtained by shrinking the interior of (2);
£(12) remain constant. Allowing a slight abuse of notation we write these norms as

8
_ T
(U V)hrs = Y O] ;
J=r

where r > 0 and s < v. Shrinking the interior of D accordingly one has

(U, Dv)h,k,I = Ivl|2 - |vk|2 - (Dv,v)h,k,z
1. e.,
v]Z, < Joel? + 2/| Dol kallv] |k
Obviously ||v||k ki < ||0]|how = ||vl|n, Wwhence
2, < €l|Dvl2 + (71 + 1+ OB)) [Ivll2
where (11) and the standard algebraic inequality have been used. O
g q y

2.4 Adjoint Operators

As usual AT denotes the transpose of A. We know from section 1.1 that (u,Av) =
(ATu,v), i. e., the transpose of A is the adjoint operator. The question is whether AT
also is the adjoint operator with respect to (-,-)s as defined by (2). Let

Ao
A= A; = A(GR), 7=0,...,v, hr=1 (12)
A,

denote the matrix representation of A(z) € R**?, z € [0,1]. Smoothness will be assumed
as needed.

Lemma 2.1 Let ¥ and A be defined by (2) and (12), respectively. Then
|(u, Av)s — (AT, v)a < O(R)[fullallv]]4
Proof:
Denote the commutator of £ and A by [, A]. Then
(u, Av)y = (ATu, )y + huT[Z, Ao (13)
where

0

[g(l)’A(l)]
[Zv A] = (

(5, A) )

9



~ with

0 O’Ql(Al - Ao) e UQT(AT - Ao)
[2(1)’ A(l)] — —0'01(14.1 - Ao) 0 . O'IT(AT.— Al)
_JOT(Ar - Ag) -—0'1,-(147- - A]) e 0

The other non-zero block has a similar structure. Assuming that A(z) is differentiable we
can apply the mean value theorem

0 0'01A/10 N O'QTT'A;,O
[E(l) A(l)] —h —0'01A,10 0 e 01.,-(7' - I)A:‘I
—oo,r ALy —on(r—1)A, ... 0
Hence,
(2, Av)n — (ATu, 0)i] < e AJoch? (Julo™] + [u®][v®]) < OR)|lullallv]la
which proves the lemma. O

_ Remark: According to lemma 2.1 the transpose of A is an approximate adjoint with
respect to (+,-)s, and the perturbation consists of lower order terms. The following as-
sumption will be crucial when proving strict stability for hyperbolic systems.

Assumption 2.1 Let A and ¥ be given by (12) and (2). Then one of the conditions
below is assumed to hold.

(i) L is diagonal diag(ool ...0,1).
(11) The blocks of A satisfy Ag=...= A, and A1 =... = A,.

Corollary 2.1 If assumption 2.1 holds, then (u, Av), = (ATu,v)4.

Proof:
In both cases we get [£, A] = 0. The result follows immediately from (13). o

Remark: The latter criterion is satisfied if there is a § > 0 such that A(z) = const for
0<z<éand 1 —6 <z <1,andif h is chosen such that Ar < §, where r = max(ry, r2).

Corollary 2.2 Let A be given by (12). If A is symmetric then then (u, Au)y, = (Au,u)s.

Proof:
A symmetric implies that [E, A] is antisymmetric. Hence u [, AJu = 0. o

10



2.5 Some Operator Estimates

In this subsection we have gathered some operator estimates that will be needed in sub-
sequent sections. The results are valid for norms defined by (2) unless otherwise stated.
In particular, the estimates will be given in a form suitable for proving strict stability of
the semi-discrete systems.

Lemma 2.2 Let ¥ and A be defined by (2) and (12). Then
|(, Av)i| < | Ao (1 + O(R)) [[e 1 llv][x

where |Al = sup |A(z)|.

Proof:
The definition of (-,-)x implies that (u, Av), = hiT Av, where & = £y, & = £V%, and
A =XY2A%-1/2 | Taylor expansion yields A = A+ R,

R
R= 0
R®

[(u, Av)al < [All115] + Ok) (OB + [122]115))

with RO = O(h), 1 =1,2. Thus

i.e.,
|(u, Av)a| < (|Aleo + O(R)) [|E]][|5]]

where || - || denotes the standard Euclidean norm. Since ||a|| = ||ullx, ||2]| = ||v||s, the

lemma follows. a

Corollary 2.3 If, in addition to the hypotheses of lemma 2.2, assumption 2.1 is fulfilled,
then
|(u, Av)a| < [Aloo[u]lal[v]]n

Proof: i
The hypotheses imply that A = A, and the corollary follows. 0

Remark: Lemma 2.2 states that the growth rate induced by low order terms is the same
(modulus O(h)-terms) in the continuous and the semi-discrete case.

It is well-known that (u,[D, Alv)r < ||[D, Allls||u||z||v]|s, where ||[D, A]||n can be

bounded independent of h. This result can be sharpened under certain circumstances.
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Lemma 2.3 Let D be a difference approzimation satisfying the summation-by-parts rule
(1) with respect to a weighted norm (2), and define A by (12). Suppose that assumption
2.1 holds. If A is symmetric, then

(u, [D, AJo)n < p([D, Alullal[v]l4

Proof:
According to the definition of the operator norm we have

1D, Al = max [IID, AJll; = max hw! CTCw

where w = £/%p, C = 21/2[1) A]Z-1/2; Because of the assumptions on A (or ) we have
C = DA — AD, where D = £/2D¥-1/2, Summation by parts implies that

.y
YD = D, + D,, D,=%( 0 ) I € R
I

and D, is an anti-symmetric matrix. Consequently,
C = [Z"Y2D, 2712, A]

~ where we have used [£~1/2D,£71/2, A] = 0. Since D, is anti-symmetric and A symmetric
we have CT = (| i. e,

1D, ANlIF = max hw' C*w = p(C)?

Finally, C = £'/2[D, A]J£~'/? implies that
[D, Allln = o([D, A])

which proves the lemma. 0

3 Homogeneous Boundary Conditions in One Di-
mension

We shall successively consider hyperbolic, parabolic and mixed hyperbolic-parabolic sys-
tems. Variable coefficient matrices will be allowed. To simplify the presentation we shall
- only deal with the lower boundary z = 0, which is justified if we take the solution to have
compact support. In general, the upper boundary z =1 is treated in a fashion similar to
the procedure at the lower boundary.

12



3.1 Hyperbolic Systems

Consider the hyperbolic system

uy = Au, + Bu+ F 2 €(0,1)

A_(z,t)
ulz,0) = 1(x) A=) = )
u_(0,t) = Luy(0,t) L € Rhx% Ai(z,t) -

where u € R?, dy +dy = d; A_, Ay is the partitioning of A into negative and positive
eigenvalues. It is assumed that the elements of the diagonal matrix A never change sign
at the boundaries z = 0 and z = 1, and that there is a constant v > 0 such that
A_(7,t) £ —y and A;(j,t) > v, 7 = 0,1 This implies that the rank of L is constant.
Furthermore, L is assumed to be “small”.

The discrete boundary conditions are written as L7v = 0, where
LM=(LT 0 ... 0)eR"t+0e (15)

Here LT = (I —~L ) € R"*? the latter L being the analytic boundary operator. It
follows immediately that rank(L) = rank(/) = d;. The hypothesis of proposition 2.5 is
thus satisfied, and we have the semi-discrete system

A(0,1)
A= (16)
A(1,1)

v = P(ADv+ Bv+ F)
v(0)=f

Proposition 3.1 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. If P is defined by (10) and (15), then the solution of (16) satisfies an

energy estimate
t , t
@I + [ (1oo(r) P + o (r)2) dr < Ke@+2® (11712 4 [*||P(r)] 2 )

Proof:
The energy method yields (using propositions 2.5, 2.4)

d
EH'DH% = 2(v,v)n = 2(v, P(ADv + Bv + F)), = 2(v,ADv);, + 2(v, Bv)n + 2(v, F),

Summation by parts implies (v, = 0)
(v, ADv)y = —vd Agvo — (Dv, Av)s — (v, [D, Alv)s

Hence, by lemma 2.1

1 1
(v, ADV)x < =507 Aovo + 5 (Kollollnl I Dvlls + (D, Alllo112)

13



where hD is a bounded operator, 1. e.,

] 1
(v,ADv), < —Evgf\ovo + 5 (K1 + I[D; Alll) |lv[%
Now, according to propositions 2.4, 2.5 we have LTy = 0, which is equivalent to v_ = Lvy

(the latter L denoting the analytic boundary operator). Thus
vdAovo = vTA_v_ 4+ vIAv, = vI (A+ + LTA_L) vy > %‘volz

where the last inequality follows from the boundary conditions and the assumptions on
L and A. Note that the analytic problem would result in exactly the same inequality.
Hence

g Lo
(v, ADv)a < = [vol” + 5 (K + [[[Ds Alllw) [Io[1%

Lemma 2.1 shows that

(v, Bo)s < (1Blo + O()) [[v][i

Consequently,
d . 2 . 1
— < A o < h 2 2
I+ Pol? < s (D, Alll + 21Ble 41+ Ko -+ OURIIE + 1F11)
Integration with respect to ¢ proves the proposition with K = max(1,2/7). 0O

Definition 3.1 A semi-discrete approzimation to the initial-boundary value problem u, =
F(z,t,0)u is said to be strictly stable, if the semi-discrete solution satisfies an energy
estimate that is exponentially bounded by exp(a't), o = a+ O(h), where « is the ezpontial
growth factor of the analytic estimate.

Remark: If A (or (-,-)) satisfies the assumption 2.1, it follows that K; = 0. Also, by
lemma 2.3, ||[D, A]l|» = p([D,A]). Eq. (16) would thus be strictly stable if p([D,A]) <
|A’|co. In particular, (16) is strictly stable if A(z) = const, since this implies [D, A] = 0.
We also point out that the proportionality constant K is completely independent of the
discretization. In case the estimate of the boundary integral is not needed one may take
K = 1. For variable coefficient problems we have the following result:

* Corollary 3.1 Let D and (-,-)s be given by (3) and ({). Then (16) is strictly stable.

Proof:
According to the preceding remark the corollary follows if we can show that p([D,A]) <
|A|o. But

0 Ay — Ao
| 08— 80) 0 0.5(A2 — A1)
[D,A] =+ : ..
O'S(Av—l - Au—2) 0 OS(AV - Au—l)

A, — A 0

14



Assuming that A(z) is C' the mean value theorem gives A; — A; = A’(&;;)(¢ — 7)h for some
&; € (th,3h). The corollary thus follows from the Gersgorin disc theorem. ]

3.2 Parabolic Systems

We consider the parabolic system

ut:Auxx+BUx+Cu+F -TE(O,].) LI L]
u(2,0) = 1(z) L) w=(%) oo
Lou(O,t) + Llux(O,t) =0 0

where LI, € R*¢ LIl € R®*¢, d) + d; = d; rank(L]) = dy, rank(L}") = d;; A, B, C,
and F' depend smoothly on z and ¢. It is assumed that the system is strongly parabolic,
i. e, A(z,t) + A(z,t)T > 261.

The following lemma, a proof of which can be found in [3], will be crucial when proving

an energy estimate for the solution of (17) and its semi-discrete counterpart.

Lemma 3.1 Let A € R¥™? be arbitrary and let Lo, Ly € R**? be of the form (17). The

following conditions are equivalent:

(i) There exists a constant ¢ > 0 such that
[uT Aug| < clul?
for all u, u, € R® that satisfy

Lo’u. + Lluz =0

(i) If a, b € R are vectors such that
Lib=0, Lifa=0
then
aTAb=0

Assumption 3.1 Given the boundary matrices Lo, Ly, the matriz A is supposed to be
such that the second condition of lemma 3.1 holds.

Remark: Except for Dirichlet and Neumann conditions, assumption 3.1 imposes severe
restrictions on A. Lemma 3.1 states that the assumption above is necessary in order
to obtain an energy estimate. The computations that follow will show how the second

condition, which holds by assumption, implies the first.

Before deriving the energy estimates, one more lemma is needed [3].
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Lemma 3.2 Suppose that assumption 3.1 holds and that A(z,t) + A(z,t)T > 261. Then

the d x d matriz
L]
Ll

As usual the boundary conditions are written as L7v = 0, where

is non-singular.

LT=<LO+%L1 %Ll -d-h"—’Ll 0 ...o)eRd"‘””d (18)

where dy;/h are the non-zero elements of the first row of D, which is a difference operator
satisfying the conclusion of proposition 2.1 or 2.2. We have

dOO _ (doo/h)II L{ h Lé
L0+TL1 = ( el Lél +-d—0-; 0

Thus, lemma 3.2 implies that Lo + (doo/h)L; is non-singular for A > 0 sufficiently small.
From (18) it follows immediately that rank(L) = d. According to proposition 2.5 the
corresponding projection operator is well-defined, and we obtain

A(0,1)

A= - (19)
A(1,1)

vy = P(AD*v+ BDv+ Cuv + F)
v(0) = f

~ with similar expressions for B, C, F.

Proposition 3.2 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. If P is defined by (10) and (18), then the solution of (19) satisfies an

energy estimate
t , t
(I + [ (1a(r) + oulr) ) dr < 40O (15112 + [11F () e )
Proof:
By propositions 2.5, 2.4, 2.1 we have
(v, PAD*v), = (v, AD%), = —v] A(Dv)o — (Dv, ADv); — (v, [D, A|Dv)

where we have assumed homogeneous Dirichlet conditions at the upper boundary for
convenience. Due to proposition 2.5 it follows that

10
LQ’UQ + Ll']; Z doj'Uj = L()’Uo + LI(D'U)O =0 (20)

=0

16



Partition v; = v} 4 v/, v} € ker L{, v/ € (ker L{)1. Eq. (20) implies L{/vy = 0 and by
construction Li(Dv') = 0. Hence, according to assumption 3.1

—ng(Dv)o = —ng(Dv")g

Eq. (20) can be rewritten as

1
( [(I)l ) (D'U”)o = —Lovo

Since (Dv")q € (ker L1)* we get

I
b
$1

Li(Dv")o = —Lovo, L= )
where {s;} is a basis in ker L!. Thus, L, is non-singular, and one obtains

—vg A(Dv)o = vg ALT  Lovo < 7|vo|?, v = |AL7 Lo|eo
This is exactly the same expression as one would get in the analytic case. Thus

(v, PAD*v)1 < lvol* — 8| Dol[} + |[D; Alllallo]|al[ Dol ] (21)
Furthermore,

(v, PBDv)i < (IBloo + O(R)) |[vlal| Dollas (v, PCo) < (|Cle + O(R)) [Ioll;  (22)

Finally, proposition 2.6 and the algebraic inequality yield
d !
S IIVlE + ol < (o + O(R) [Ioll; + 11 P13

Integration with respect to time proves the proposition. ]

Remark: All coefficients, except ||[D, A]||», appearing in (21) and (22) are identical
(modulus O(h)-terms) to those of the analytic estimate. Since the discrete Sobolev in-
equality 2.6 introduces the same growth rate as the analytic Sobolev inequality, it follows
that (19) is strictly stable if we have the estimate ||[D, A]||s < |A’|co, Which is true if
A(x) = const. For variable coeflicients one can prove

Corollary 3.2 Let D and (-,-), be given by (3) and (4). Then (19) is strictly stable if A

s symmetric.

Proof:
Same as for corollary 3.1. a
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3.3 Hyperbolic-Parabolic Systems

Consider the mixed hyperbolic-parabolic system

Uy = Au”-’rBqu+Blgvr+Cuu+Clgv+F T € (0,1)

vy = Avg + Btz + Coju + Cov + G ue R4 ve R%
Llux(O, t) + Lou(O, t) + MQ'U(O,t) =0 ) ., M, = MOI
v_(0,t) = Sov4(0,t) + Rou(0,¢) v_ €R%,v, eR% 7 0

(23)
As usual we assume u = v = 0 in a neighborhood of z = 1 for convenience; Lo, L, are as
in section 3.2, and Sy satisfies the hypotheses of the boundary operator in section 3.1. The
coefficient matrices and the forcing functions of the differential equations may depend on
z and t.

The discretized boundary conditions are written as LTw = 0, where LT € R¥*v+1)d,

d=d; +dy, & = dy +d is given by
dO'r
(TLI 0} o ... 0
0 0

d,
Lo+—;:2L1 M, (d—zlLl 0)
~Ro (1 ~S0 ) 0 0
(24)

We want to show that LT has full rank. The first block of LT can be rewritten as

(D(()h) (;) K _f}zﬂ (]) g)+ ( (h/ag,o)i (h/dog)Moo (h/d_og)oMm \)]

o= (@) oo () 1 (%)

Since L is invertible, it follows that

( —I;J%o ? ) + ( (h/ff)cm)f: (h/dog)Moo )

is invertible, i. e., has full rank for A > 0 sufficiently small. The expression enclosed by
the square brackets thus has linearly independent rows, which in turn implies that the
first block of LT has full rank. Hence, L has full rank, and the corresponding projection
is well-defined.

where

The semi-discrete system is formulated as

— A2 AT A [ .
wt—P(ADw+ADw+C’w+F) wjz(uj>, i=0,...v (25)
w(0) =¥

18



where

A=
A(1,8) 0
(%675
B]](O,t) Blz(o,t)
BQI(Oat) A(Oa )
A
Bii(1,t) Bi2(1,1)
(le(u) A(1,1) )
Cu(O,t) 012(0, )
( Czl(o,t) 022(0, ) )
C =

( Cu(1,t) Cia(1,1) )
Ca(1,t) Caa(1,1)

The forcing function F and the initial data ¢ are defined analogously.

Proposition 3.3 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. If P is defined by (10) and (24), then the solution of (25) satisfies an

energy estimate

@I+ @I+ 5 [ (s + o)) dr

i=0,v

< KeC OO (71 + 1161l + [ (IPO)IE +1IG(7)IE) d

Proof: The energy method applied to (25) yields

d o n .~ ~ N . .~ - .
EHwaL =2(w, P(AD*w + ADw + Cw + F)), = 2(w, (AD*w + ADw + Cw + F)),

Now
.~ v A 0 1 v
(w,AD?'w)h = h Z U,'j(u;TUiT) ( OJ 0 ) T2 Z djkdklwl

1,7=0 k, =0

v 1 v
= h Z O'ijuiTAjﬁ z djkdk,ul = (u,ADzu)h

1,7=0 k,1=0

where D is the difference operator of (19). The remaining terms are handled in a similar
manner. One has
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w, AD*w), = (u, AD*u),,

-t

w, Dw)h = (u, BiyDu)y + (u, B12Dv)p + (v, Boy Du)p + (v, ADv)y,

) (
) (
(i) (w, Cw)n = (u, Cyyu)y + (u, Cro0)n + (v, Cort)s + (v, C22v)n
) (w, F)r = (w, F)a + (v, G

For convenience we use the same symbol D to denote the difference operators acting on
u and v. As far as the energy estimate is concerned, the hyperbolic-parabolic system has
now been reduced to the previously treated hyperbolic and parabolic systems.

Items (iii) and (iv) consist only of lower order terms, and can be estimated using
lemma 2.2. Thus, the coefficients of the estimates are identical to the corresponding
analytic estimate (modulo O(h)-terms). In item (ii) the potentially “dangerous” terms
are those containing Dv. Using exactly the same technique as in the proof of proposition
3.1 we get

1
(0,AD0)n S =7 [vol” + ST A= Rolovolluo| + 5| A5 A Roleo o

L (K + 1D, ALl el

3

i. e., by means of the algebraic inequality

~ 1
(v, ADv)n < —<lvol* + mluol” + 5 (K1 + D, Allls) [lvl[2

Furthermore,
1
(u, BizDv)w < 51B1afeo (61|UD|2 + fflluolz) + [I[D, Bua]llallullnl[vlls — (Du, Bizv)n

Finally, in item (i) the term (u, AD?u), is treated as in the proof of proposition 3.2, the
only difference being that

—'U,gA(DU)O = 'u,gAz/l_l.LoUo + ugAz/i_lMo’Uo S Y2 [62"00'2 + (62_1 + l) |UO!2]

We point out that the coefficients of the boundary terms in the inequalities above are
identical to those of the analytic estimate. Choosing ¢; and ¢, sufficiently small we thus
arrive at

d g
Ellei +tq (luol® + fvol?) < (o + O(R)) ||wlf; + |IFII} + IGII3

where we have used ||w||? = |[u]]2 + [|v||Z; in the right member we have used proposition
2.6 and the algebraic inequality to eliminate |ug|® and ||{Du||s. Integration proves the
proposition with K = max(1,4/7). O
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Remark: In case no estimate of |vo)|® is needed one may take K = 1. Also, only the
coefficients ||[D, A)||x, I[D, A]llx, |[D, Bi2}||» and K; will be larger than their analytic
counterparts. If either of the conditions of assumption 2.1 is met, then K; = 0 and the
operator norms can be replaced by the corresponding spectral radii (cf. lemma 2.3). In
particular, if A, A, By, are constant, then (25) is strictly stable. As before, for variable
coefficients we have

Corollary 3.3 Let D and (-,-)s be given by (3) and (4). Then (25) is strictly stable if A

and By, are symmetric.

Proof:

Same as for corollary 3.1. ]

3.4 Strict stability

So far we have obtained strict stability under special circumstances, such as constant
coeflicient problems or second order methods. The crux of the matter lies in estimating
the commutator [D, A]. Only in the previous cases were we able to prove that ||[D, A]||x <
|A'|oo- In fact, numerical experiments show that ||[D, A}||» > p([D, A]) = K|A'|e, K > 1,
for high-order methods. Typical values for D’s corresponding to diagonal norms are
K =1.67, K = 2.55, and K = 35.8, where the operator accuracy increases from three to
five. One would still obtain K > 1 even if one considered only the interior operator. This
indicates that the commutator should be avoided, which can be achieved if the analytic
problem is reformulated.

The hyperbolic system (14) can be rewritten in skew-symmetric form as

w=5(Au) + shu + (B= A )ut F oz e(0,1)
u(z,0) = f(z)
u_(0,t) = Luy(0,t) L € Ré1xd

The corresponding semi-discrete system becomes

v, = P (%DAv n %ADU n (B _ %A) v+ F)
v(0) = f

(26)

Proposition 3.4 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. Define P by (10) and (15). If either A or ¥ fulfills assumption 2.1,
then (26) is strictly stable.
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Proof:
The energy method implies

d
EHUH% = —vOTono — (Dv, Av)i + (v, ADv)y, — (v, A'v)4

+2(v, Bv)p + 2(v, F)n

The boundary terms are treated exactly as in the proof of proposition 3.1. Because of
corollary 2.1 we have (Dv,Av), = (v, ADv),. Thus, by lemma 2.2,

d Y
allvlli + -2-|vo|2 < (|A oo + 2|Bloe + 1 + OB |02 + || F| |2

which is identical (neglecting O(k)-terms) to the analytic estimate. O
Remark: If ¥ is diagonal, then the O(h)-terms vanish identically (corollary 2.3).

The parabolic system (17) is altered in a slightly different manner. The modified

system reads
ur = (Aug)e + (B — Au, +Cu+ F z€(0,1)

u(z,0) = f(z)
Lou(O,t) + Llux((),t) =0

which is discretized as

P(DADv+(B A)Dv+ Cv + F) (27)

t =

v(0)
Proposition 3.5 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. If P is defined by (10) and (18), then (27) is strictly stable.

Proof:
Left to the reader. =]

Finally, the mixed hyperbolic-parabolic system is reformulated as

u; = (Aug)z + (B — A)ug + (Bi2v)z + Cuau+ (Cr2 — Bio)v+ F z € (0,1)
1

1 1
v = —(Av), + ‘2‘sz + Baug + Coiu + (Cag — 5-/\’)12 +G

5
where the initial data and the boundary conditions are identical to those of (23). In
semi-discrete form we have

w, = P (Dfif)w + DAw + BDw
w(0) =

+
Q
!
>
g
4+
B
SN

(28)
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where

( (0 Bi2(0,1) )

0 A(0,1)/2
A=
0 Bia(1,t)
<0 A(l,t)/Q)
( (Bu(O,t)—A’(O,t) 0 )
B2:1(0, 1) A(0,)/2
B=
(Bn(l,t)—A’(l,t) 0 )
\

By (1,1) A(L,t)/2

Proposition 3.6 Let (-,-), be given by (2) and suppose that D satisfies the conclusion
of proposition 2.1. Define P by (10) and (24). If either A or ¥ fulfills assumption 2.1,
then (28) is strictly stable.

Proof:
Left to the reader. a

4 Homogeneous Boundary Conditions in Two Di-
mensions

The results of section 3 will now be generalized to two space dimensions. If the boundary
is smooth, the original problem can be decomposed into two problems via a partition of
unity, one of which is a Cauchy problem. The second problem is an initial-boundary value
problem that is periodic in one space dimension, see figure below.

I @ = II + I

Consequently, summation by parts is needed only in one dimension, and the generalization
of propositions 3.1, 3.2, 3.3 to two dimensions follows immediately. For details on the
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decomposition we refer to [3]. The situation is different if the boundary is non-smooth,
which is the case in the presence of corners. As mentioned at the end of section 2.1, it
is not known how to extend norms of type (2) so as to obtain summation by parts in
several space dimensions. We thus limit ourselves to diagonal norms, in which case we
have proposition 2.3.

All boundary conditions considered so far are local. In case of characteristic and
Dirichlet conditions no new difficulties are presented in two dimensions, because each
boundary point can be treated individually. Boundary conditions involving derivatives
increase the complexity significantly. Therefore, we shall only allow normal derivatives in
the boundary operator. This is no serious restriction from the application point of view.
Thus, away from the corners these boundary conditions are locally one-dimensional. For
each such boundary point we obtain a projection operator of the previous section. In
particular, these operators commute since they affect disjoint sets of grid points. At cor-
ners the situation is more complicated, because there are two different normal derivatives,
- which implies that the corresponding projection no longer is locally one-dimensional.

'Y ° P, P, P. commute

P,

Throughout this section we shall focus our interest on the origin, and assume that the solu-

tions are supported only in a neighborhood of (0,0). The remaining boundary conditions

will be accounted for by applying the projection operators corresponding to the boundary

point in question. Since these operators commute, the resulting product is the uniquely

defined boundary projection. The domain of definition is taken to be = (0,1) x (0,1)

with boundary I'. It will be shown later how to extend the results to curvilinear domains.
In order to simplify the presentation all lower order terms will be omitted.

4.1 Symmetric Hyperbolic Systems

Consider

utz‘::Aiu,'+F, e =(0,1)x(0,1), ue€R*

i=1 (29)
u(z,0) = f(z) z = (z1,22)
er(z,t) = S(z)err(z,t), €T
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where ¢, @1 denote the locally ingoing and outgoing characteristic variables; A; =
Ai(z,t), 1 = 1,2 are symmetric and S(z) is assumed to be “small”. It should be noted
that ¢; € R*®, o7 € R%), where d,(z) + dy(z) = d, € I'. The matrix

A(z)

' ni(z)Ai(z) (30)

1=1

can be diagonalized for every z € T'; n{z) = (ni(z), n2(z)) is the outward unit normal of

I'. Hence

A(z) = QT(2)A(2)Q(z), =z €T (31)
The characteristic variables are only needed at the boundary, and they are defined as
o(z,t) = QT(z)u(z,t). It will be assumed that A(z) is uniformly non-singular for z € T,
i. e., the eigenvalues are bounded away from zero. However, the number of positive
and negative eigenvalues may differ from one boundary point to another. The analytic
boundary conditions can thus be expressed as

L(z)u(z,t) =0 L(z)=( Q(z) -S(z)QT(z) ) (32)

Clearly, L(z) has full rank for every z € T'. Strictly speaking, L(0,0) is not defined so
far, because the normal n(0,0) is not well-defined. It will soon be shown how to define
L(0,0), and we can formally consider L(z) as being defined for every z € T'.

Let vy, 2 = 0,...,11, j = 0,...,1; be a grid function. Define vT = (v ... v,i),
vl = (vl.... vT ). The discretized boundary conditions are written as
J J v1J
Livi=0, :=0,1n, 3=1,...,50~1 and j=0,1p, :=0,...,1 (33)
where N
LE=(0 ... 0 L(ihy,jhs) 0 ... 0 )€ RHENx+D
with the non-zero element being the z th entry. At the origin we define
L(0,0) = ( Q(0,0) —5(0,0)Q7,(0,0) ) (34)

where (0, 0) fulfills

2 h h
QTAOOQ = Aoo, Aoo = ZniAi(O’O)’ ny = —‘}‘lg,nz = —717 h= vV h? + h%

i=1

The motive for defining L(0,0) this way will be evident later. Furthermore, Ago 1s sup-
posed to be non-singular. Let

V1
Ly = ( Loo - Luo ) € Ri+ldxso o Zdl(i,o)
1=0
Lj =( LQ_,’ LVlj ) ER(VI-H)dst, 8; = Z dl(iaj)7 jzl,-~-,V2—1
2’:0,!/1
[}
LU2 _ ( LOuz . Lu1u2 ) € R(U1+1)d)(s,,2’ Suy = Zdl(i,V2)
=0
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The boundary conditions may thus be expressed as
Lo _ Ve
LTv=0 L= g Rn+)0atl)dxs o — s, (35)
L, =0

Obviously rank(L) = s, i. e., L has full rank. Hence, the corresponding boundary projec-
tion is well-defined, and is given by

P=I1-32'L(LTs'L)' LT
where

OoXy ool
L= , Ti= , 1eR™

0',,221 Oy

It is possible to simplify the expression for P in this case. We have

ZI—IL()/O'O
T =
Z1_114112/0-1/2
But £7'L; = L;H;, where
L I/UO SyXs; ;o
H;—-( I/O'Vl) €R ]—1,...,1/2—1
1/0’0
H; = € RY j = 0,1
]/O'm
Hence
Ho/a'o
Z-IL::LH, H = € R***
HVQ/UVz

_ Clearly, H is invertible. We therefore arrive at
P=1—-LHLTLH) LT =T - L(LTL)'LT
i. e., P is independent of X.
The semi-discrete system can now be defined as
2
v,=P (; A;Div + F) (36)
v(0)=f

It will next be shown that the solution to the system above satisfies an energy estimate.
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Proposition 4.1 Let (-,-)n be given by (5) and suppose that Dy and D satisfy the con-
clusion of proposition 2.3. If P is defined by (10) and (85), then the solution of (36)

satisfies an energy estimate

(I + [ o)l < i (1R + [ 1F()Iiar )

where the boundary energy || - ||r is given by (1 = vy = v for convenience)

v

()[R = ke 3 o5 (lvosl” + lvnsl?) + by 3 o (Joiol® + v )
1=0

=0

Proof:
From propositions 2.5 and 2.4 we obtain

d 2
S0l =23 (v, ADiv)s + 2o, F)n
i=1

From proposition 2.3 and corollary 2.1 it follows that (v is only supported in a neighbor-
hood of (0,0))

1 14
(vy AyDyv)y, = -3 ha Z ajv;rjAlvoj + (v, [Dx, Al]u)h)

1=0
v

1
(v, A2Dav)p = ) hi Y oivhAsvio + (v, (Do, A2]v)h)

=0
Thus, by lemma 2.3 we have
d
SEIVIE <~y 3ot = b S ool von + (o100 A1) 1) Il + 11
1=0 ] =1

In the first sum the outward unit normal is n = (0, —1), and in the second n = (-1,0).
Except for the origin, the boundary terms are of exactly the same form as in the one-
dimensional case. Egs. (30), (31) thus imply that

Yio

“Yio
—vjAgvio = Pl Aiopio < ——‘|900=|2 = ——

and a similar inequality holds for the other terms. At the origin we get
"hzdovgoAl'Uoo hla'ovooAzUoo = hUolPovoosooo hUo—IS«?oolz
But A > (A + hg)/\/i Hence

T
—thovooAlvoo honUooA2voo —hy09 \/—|’Uoo|2 hyoo——= \/_|v00[2
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Since A(z) is uniformly non-singular it follows that v = inf(~yoo/ V2, %i0,Y0;) > 0. Because
of 400, the constant 4 will in general be smaller than the corresponding constant of the
analytic energy estimate. We thus arrive at

d ~y 2
—|lo|[2 + =llvllE < (X p((Di Ad) + 1] o]l + IFIIR
dt 2 1=1

which proves the proposition (K = max(1,2/7)). O

4.2 The Heat Equation

The analysis of a homogeneous Dirichlet condition is straightforward, even if the domain
of definition § is non-trivial. The problem lies in discretizing the Neumann conditions
properly. This was clear in one space dimension. In two dimensions the occurrence of
corners certainly complicates the analysis. To gain insight we shall begin by looking at a
simple model problem.

The two-dimensional heat equation reads
Up = Ugyz; + Uzpz, € € Q= (0,1) x(0,1)
Up(z,t) =0 zeTl
u(z,0) = f(z)
where u, is the normal derivative of u. Again, we focus our attention to a neighborhood
of (0,0). The boundary conditions are discretized as

J . 1 < )
—ngkvkj=0, j=0,...,r ———Zdokv,'k:O, i=0,...,r (37)
hl k=0 h2 k=0
or, equivalently,
(Dlv)0j=0, j=0,...,7‘ (ng),.o:(), i=0,...,7‘ (38)

where D; and D, are defined by proposition 2.3. The conditions above imply that two
boundary conditions are prescribed at the origin for the discrete problem. This approach is
natural from the intuitive point of view, in that gradients at the origin may be interpreted
as one-sided limits from the interior. For the time being we ignore this technicality. It
will later be shown how it can be overcome. When deriving the projection operator it is
convenient to cast the boundary conditions into yet a another form. Define the boundary
operators Lq; and Lq; through

LTv=(Dw)y; =0, j=0,...,r Ljv=(Dw)y=0, ¢=0,...,r (39)

where
1 T
Lg‘jz(o .. 0 h—IZdOke{ 0 ... 0) e R\#iletl) 5 — oy
k=0
ng(dﬂe? ﬁ4'3:-1‘ 0 ... 0) ERlx("1+l)(”’+1),i=0,...,r
ha hq
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Here {e;} is the canonical basis in R“'*'. The boundary conditions can thus be written
in standard form

L"v=0 L=(Lo ... Lir L ... Ly )€RM+IxtDlat) (40

We know that the corresponding projection operator is well-defined iff rank(L) = 2(r+ 1).

Lemma 4.1 The columns of L (40) are linearly dependent. In particular, rank(L) <
2r+1.

Proof:

To investigate linear dependence we study
2 il + 3 BiLy =0
1=0 7=0

which is equivalent to

> (ajhador + Bihidoj) ex =0, j=0,...,r

k=0

Since {ex} is an ortho—normal system it follows that
ajhgdgk-{'-ﬂkh]doj :O, j,k:O,...,T'

which obviously has the non-trivial solution

h :
OthdoJ' ﬁjZ—Ez-doj, ]=0,...,T‘

and the lemma is proved. 0

As a consequence of lemma 4.1 the projection formulation breaks down. If, however,
we change the boundary condition at the origin to

Liv=((1-xLh+xL)v=0 0<x<1 (41)

and leave the boundary conditions at the remaining points unchanged we get a well-defined
projection operator, since

L= ( Ly ... Ly, LOX Ly ... Loy ) € R2r+lx(u1+1)(u2+1) (42)

has full rank.

Lemma 4.2 The columns of L ({2) are linearly independent. In particular, rank(L) =
2r + 1.
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Proof:
Again we study

Zalej + 7L0x + Z ﬁngj =0
=1 =1

which is the same as

dOO

Z Brex + (( Z dokex + X(i—e") =0

d dy
‘%Eﬂkek+0jh_zd0k€k+7xh—eo———0] =1,...,r
2 k=1 1 k=0 2

The first component of the first equation yields y(h2(1 — x) +-h1x)doo = 0. Since dgo # 0
for any operator satisfying proposition 2.3, and since h; > 0, 0 < x < 1, necessarily
4 = 0. From the remaining components of the first equation we then obtain 38, = 0,
j = 1,...,r, which in turn implies a; = 0, § = 1,...,r. The columns of L are thus
linearly independent, i. e., L has full rank. o

Before proceeding with the energy estimate, one more technical lemma is needed. Let

Loy, and Lq,, be defined by (41), and let

L=(Ln ... L Loy, Loy Lau ... Ly ) €RA#Ixalad) o (43)

Lemma 4.3 The columns of L ({3) are linearly dependent. In particular, rank(L) <
2r+ 1.

Proof:
Consider

Z a;L1; + Loy, + 12Lox, + Z BiLy; =0

j=1 j=1
Obviously the lemma is true for x; = x2. In the following we thus assume x; # x2. The
equation above can be rewritten as

doaiLij+ ) Bily =0 (44)
J=0 3=0

() ()= (%)
X1 X2 Y2 Bo

According to lemma 4.1, eq. (44) has the non-trivial solution

where
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whence

ha

1= doo|x2+ (1 —x2) ) /(x2—x1)
hq p hzd ,
h2 Qa; = doj ﬁ]:'—h_l 074 ]:1,...,7'
Y2 = —doo X1+h—1(1—X1) /(x2 — x1)
solves the original equation. The lemma is proved. 0o

Proposition 4.2 Let P be given by proposition 2.5, where L is defined by ({2). Then
LL,P=LL,P=0.

Proof:
Clearly, LTP = 0. Furthermore, Lqo, Lyo = Lo, for x = 0,1, respectively. But then, by
lemma 4.3,

Lo =Ly Ly = Loy

for some vectors ay, cp € R*t1. This proves the proposition. 0

Remark: Suppose that v is a vector such that v = Pv, where P is as in the previous
proposition. Then Lijov = Lyv = 0, i. e., (D1v)oo = (D2v)o0 = 0. In other words, by
requiring that the boundary condition at the origin hold for a specific convex combination
we actually get the stronger result (D1v)oo = (D2v)o0 = 0. Thus, we need not overspecify
at the corners, cf. eq. (37). In the appendix we give a direct proof that L7, P = 0 for Lo,
with x = 0.5.

The semi-discrete heat equation is given by
vi = P(D}+ D})v
v(0) = f
Proposition 4.3 Let (-,-), be given by (5) and suppose that Dy and D, satisfy the con-
clusion of proposition 2.3. If P is defined by (10) and (42), then the solution of (45)

satisfies an energy estimate

(45)

llo@)lx < 11F11s

Proof:
The energy method gives

d
= IPllk = 2(v, Div)s + 2(v, Dyv)a

By proposition 2.3 (v is supported only in a neighborhood of the origin),
(v, Do) = —hg ) ajv0;(Div)o; — || Drvl[;
=0

According to propositions 2.4, 2.5 and 4.2 we have
(D1v)oj = LTv=0, j=0,...,r

The remaining term (v, D2v), is treated similarly, and the proposition follows. O
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4.3 Parabolic Systems

Consider
2
u =Y, Aijugz, + F, r€Q=(0,1)x(0,1), ueR®
ij=1 (46)
u(z,0) = f(z), z = (21, x3)

Lo(z)u(z,t) + Li(z)un(z,t) =0, z €T

The assumptions on Lg, L; in (17) are supposed to hold pointwise for each z € I'. Fur-
thermore, we require that assumption 3.1 with A = A;; be valid on z; = 0, : = 1,2. In
particular, the conclusion of lemma 3.2 holds for each boundary point. It will be assumed
that (46) is strongly parabolic, i. e., there are vectors u;(z,t) € RY, i = 1,2, such that

2 2
Y wilz, ) Ay, t)uy(z, t) 2 26 ) fui(e, t)[?
1.j=1

i=1

for all z € Q,t > 0. If the matrices A;; # 0, ¢+ # j, then the assumptions must be
strengthened. The energy method applied to one of the cross terms yields (u is supported
only at the origin, A;; = const for simplicity, 1 is the unit square)

(U, A12uz1x2) = —/ 0 UTAmuxzdwz - (le,Alzuxl)
ri=

In general we cannot get an estimate of u,,(0, z3,t) in the boundary integral. It is therefore
natural to require

Assumption 4.1 AT = A;;, 1 # 5.

Remark: Neglecting scaling factors we have

1
A12=A21 = -
p

[ e R e I e
[ =R =]
OO - O
[ Y e B e B o

for the Navier-Stokes equations (p denotes the density). Clearly, assumption 4.1 is fulfilled.

If assumption 4.1 holds one can integrate by parts once more to obtain
1
(u, Alguxm) = EUTAH(O, 0, t)u - (Uzl , Alzuxz)

" In two dimensions we cannot eliminate the boundary terms by means of Sobolev inequal-
ities, since they would involve L?-norms of ug,,, and so forth. This motivates
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Assumption 4.2 Let u(z,t) satisfy
Lo(0,0)u + L1(0,0)u, =0

at the origin. Then
uTA;(0,0,)u=0, i#j

Remark: This assumption ensures an energy estimate for the continuous problem in
case of a non-smooth boundary, and couples the cross terms of the differential operator
to the boundary conditions at the origin. In case of the Navier-Stokes equations one has
zero velocity at the origin. Hence, the state vector becomes u” = ( p 0 0 p ), which
implies assumption 4.2. -

The discrete boundary conditions are formulated as (D; and D, are defined by propo-
sition 2.3)

LTJ-’U = LQ(O,jhg)Uoj + Ll(O,]hg) (D]’U)Oj = 0, ] = 0, N &

(47)
L;{iv = Lo(’ihl,ﬂ)vio + Ll(lhl,O) (DQ'U){O = 0, 1 = 0, ey T
where
L’ITJ:(O ... 0 Lo(O]h2)€0+L O]h2 Zdokek O)
T _ . doo T . dor T
in— Lg(lh1,0)+L1(Zh1,0)h €; L](Zhl,O)“h—ei 0 ... 0
2 2
and e = (0 ... 0 I 0 ... 0) € R*"+)d  The boundary conditions can be
expressed in the usual form as
LTv=0 L= ( Ly ... Ly, Loy Ly ... Ly ) € Rr+Ddx(t)0at)d (48

where

Loy =(1 = x)L1wo+xLao 0<x <1

Lemma 4.4 The columns of L (48) are linearly independent for sufficiently small step
lengths hy and hsy. In particular, rank(L) = (2r + 1)d.

Proof:
Imitating the proof of lemma 4.2 gives

1 _
~ [ L0(0,0) +d00( X 4 )Ll(O 0)] 0
o T,
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By lemma 3.2 the expression inside the brackets is non-singular for hq, h, sufficiently
small. Hence, ¥ = 0, which in turn implies a; = 8; =0, j = 1,...,r. Since the columns
of each block Ly;, Lz; and Lo, are linearly independent, the lemma follows. O

The semi-discrete parabolic system reads

2
vy=P ZA,"D,‘D'U-{-F s
(i,j:l ! ! ) (49)

v(0)=f

where P is defined by proposition 2.5 and by (48). Unfortunately, assumption 4.2 is not
sufficient for the semi-discrete problem. We need

Assumption 4.3 Let v satisfy
Lo(0,0)vo0 + L1(0,0) (1 = x)(D1v)oo + x(D2v)oo) =0 0 < x <1
at the origin. Then
()
v30Ai;(0,0,8)v0 =0, %]
(1)
vIA11(0,0,1) = vd A25(0,0,1)

Remark: The first requirement is identical to that of assumption 4.2. The second,
however, appears only in the discrete case. We note that assumption 4.3 holds for the
Navier-Stokes equations, since Ay and Az, are given by

0 0 0 0 0 0 0 O

1 0 ¢ 0 0 1 0 10 0
A“_p 0 010 A"‘p 0 0 ¢ O
—cpfp 0 0 ¢ —cpfp 0 0 ¢

Hence, vi Ay = vl,Az = co( —p*/p* 0 0 p/p).

Proposition 4.4 Let (-, ), be given by (5) and suppose that D, and D, satisfy the con-
clusion of proposition 2.3. If P is defined by (10) and (48), and if assumptions 4.1 and
4.3 hold, then the solution of (49) satisfies an energy estimate

t , t
oI+ [ lo(r)lfzdr < @™ (71 + [P (7 far )
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Proof:
The energy method gives

d 2 T r
allvlli < =23 (h?. Y oxvorAr;(Div)ok + b Y UkUZoAzj(Djv)ko)

1=1 k=0 k=0
2

=283 |1 Diwlf; + (Ko + O(R) [lolli + |1 FIl

i=1

where K, depends on ||[D;, Ai]lln, ¢ = 1,2 and p([D;, Aij]), ¢ # 7. The first cross term

can be written as (v has compact support).

r v 1 & .

—hy ) okvapAra(Dav)ok = —ha2 orvl Ay (E_ > dkzvot> = —(vo, A12D3v0)1,
k=0 k=0 2 1=0

where vl = (v,...v%), and where D, satisfies (1) with respect to the one-dimensional

scalar product (-,-)n,. Hence,

v o~ 1 1 SO
—(Uo, A12D2'U0)h2 = Ev&Alz(O,O,t)Uoo + 5(1}0’ [Dz, A12]'U0)h2

By assumption 4.3 the boundary terms vanish. The remaining cross term is treated in a
similar vein.

Next, we take care of the boundary terms corresponding to the pure second differences.
Only the origin needs to be analyzed, since the other boundary points are treated exactly
as in the proof of proposition 3.2. At the origin we get

—hzaoUgOAn(Dlv)oo - hlaovgoAn(DzU)oo =

h
—(h1 + hz)Uovg;) ((1 = x)A11(D1v)oo + xA22(D2v)o0), X -

:h1+h2

and, by assumption 4.3,
—hyoovdy A11(D1v)oo — h100v3 Aza(D2v)oo =
—(h1 + h2)aovgeAn ((1 — x)(D1v)eo + X(D2v)oo)
But v = Pv implies Lo, v = 0, i. e., by (47)
Lo(0,0)voo + L1(0,0) ((1 = x)(D1v)oo + x(D2v)oo) = 0

In particular, Lifveo = 0. Partition v = v’ + v” where v}; € ker(L]), vj; € ker(L])*.
Assumption 3.1 then gives

—h2UoU(§)A11(D1'v)oo - honvgoAzz(Dzv)oo =
—(hy + hz)UoU&All ((1 = x)(D1v")oo + x(D2v")o0)
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By construction
LO(O’ 0)voo + Ll(oa 0) ((1 - X)(DIU”)OO + X(D2U")00) =0

which can be solved in exactly the same way as the corresponding equation in the proof
of proposition 3.2. Hence,

“hszoUoToAu(Dlv)oo - hlaovg;)Azz(Dzv)oo = hszovg;)Anl:]_lLovoo + hy UovoToAnl:l_lLoUoo

where we again have invoked assumption 4.3. We thus arrive at
d . - ~ r
allv“i +lol2 < (2040L7" Lolzeo + p([D2, Ara)) +1) B2 3 oklvol?
k=0
+ (2lA22i/1_1L0|l,oo + p([D1, Az)) + 1) hy Y ok|vkol?
k=0

~ 263 _[|IDiv|[; + (Ko + O(R)) [lolfi + |1 F ||

=1

- where [v]1,00 = sup(|vko|) and |v|z,00 = sup(vox|). Replacing p([D, A;:]) by |A%ilico, ¢ # 7,
one obtains the coefficients of the boundary terms of the analytic energy estimate. They
are thus identical if the coeflicient matrices are constant or if we use the standard second
order method. Finally, the boundary terms of the right hand are eliminated by applying
the one-dimensional Sobolev inequality 2.6 in the z;- and z,-directions, respectively. This
proves the proposition. O

Remark: It is clear from the proof that (49) is strictly stable if the coeflicient matrices
are constant, or if AL = A;, ¢ = 1,2 and the second-order method (3) is used.

4.4 Hyperbolic-Parabolic Systems

In this section we merely formulate the problem and state the main result. The reader is
asked to fill in the details. We consider the mixed hyperbolic-parabolic system

Z Aijuz,z, + Z Cyivg, + F €N

1 _7-—1

ZBvx'—%ZCz,ux‘—i—G u e R¥ veR®

1=1 M(I): ( MI(:I:) )
Li(z)un(z, 1) + Lo(z)u(z,t) + M(z)v(z,t) =0 z €T 0
er(z,t) = S(x)err(z,t) + R(z)u(z,t) zel

(50)
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The structural hypotheses on the parabolic and hyperbolic parts of the principal operator
are identical to those in sections 4.3 and 4.1. This remark also pertains to the boundary
conditions. In particular, the characteristic variables ¢; and ¢y are defined as in section
4.1. The principal operator is described by the A;;’s and B;’s; the lower order coupling is
determined by the Cj;’s. Similarly, in the boundary conditions the coupling is expressed
by M and R.

Define w” = ( w7 vT ) and let P be the projection corresponding to the boundary
conditions of (50). The semi-discrete system is then defined as

0 B(OOO t))

\ | (g Bi(l(,)l,t))

0 Cu(O, O,t)
C2i(0a 03 t) 0

\ | (cuting *G"7)

The forcing function F' and the initial data ¢ are defined in a similar fashion.

Proposition 4.5 Let (-,-), be given by (5) and suppose that D satisfies the conclusion
of proposition 2.1. Then the solution of (51) satisfies an energy estimate )

a1 + @IE + [ ()l + o(IE) dr
< Kel @ (11 411612 + [ (IF@IR + IGMIE) dr )
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-5 General Domains and Strict Stability

Nothing has been said about strict stability in two dimensions thus far. The purpose of
strict stability is to ensure the same growth rate of the discrete and analytic solutions.
If the analytic problem is defined on a curvilinear domain {1, then there must exist a
diffeomorphism ¢ = £(z) of Q) onto the unit square (0,1) x (0,1) in order for the finite
difference method to be well-defined. Consequently, a constant coefficient problem in the
original domain may be transformed to a variable coeflicient problem on the unit square,
which may account for a non-physical growth in the discrete estimate.

Let £ = £(z) be a diffeomorphism of ( onto I = (0,1) x (0,1). The following identities
are readily established

Oz, _ J—l_aé Ozz _ J—1%

BE N Jdx, 8_51 N Jr, ¢

J = det (—) (52)
Ir __ 06 O0m _ 06 0
652 - 3332 552 B 0z,

~ which in turn implies

‘ 2

> (J7'0e), =0 (53)
=1 &

where 9 denotes the two-dimensional gradient operator. We require that £(z) be uniformly
non-singular, i. e., there exists a constant § > 0 such that J=! > & on 2, For later use we

record the normal and tangential derivatives u,, and u,, at the boundaries corresponding
to&=0,:=1,2:

Uy, = (—1)'ug, /|ze, |

un, = —(0& - O&ug, + 9E; - 0 ue;) /06|

where the boundary I" of the domain 2 has been parametrized in the positive direction.

i=1,2 j#i (54)

The analytic scalar product obeys
_ T e [T -1
(wo) = [wT@w@)dr = [WT(@(O)(a(e)J e
which suggests the following semi-discrete scalar product
(u,v)p = (u, J710)p = (J 1, vy, (55)

where the last equality follows since J~! and ¥ are diagonal. Thus, each grid point is scaled
with the cell volume. Similarly, the analytic boundary integrals can be parametrized as

JL T (@pla)ds = [ uT (26, 0)ele(er, Iz (6, 0)lde

0
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Hence, it is natural to define the boundary scalar product as

v v
T T T T
(w,v)r = o; (Sojuoj'l)()j + s,,juw-v,,j) +Y o (Siouiovio + Siuuiyviv) (56)

7=0 1=0
where the arc lengths are defined as
s0; = |2 (0,7h2) Rz si0 = [2¢,(2h1, 0)|h1 Py = Aby, ha = Al

with similar definitions for s,; and s,,.

In order to prove stability we must have Pv = v. Since v will be the solution of
equations like (60), proposition 2.4 implies that PJ~'v = J~'v. Therefore, it is natural
to require

PJ ' =J'p (57)

For a general P this identity expresses a compatibility condition between the analytic
boundary conditions and the mapping {(z). Let P be given by (10) and (42). Then (57)
certainly holds if
Jij = J(z(thy,jh2)) = Jio, 7=0,...,7
J,']' = J((E(Zhl,]hg)) = Joj, 1= 0, e, T

which states that the mapping £(x) is locally isochoricin the z¢ -direction at the boundary,
where 3/0¢; is the non-tangential derivative. In case of characteristic boundary conditions
and Dirichlet conditions we have r = 0, and (58) is trivially satisfied. For general bound-
ary conditions, however, (58) couples the boundary operator to the grid transformation
(cf. assumption 4.3, which links the differential operator to the boundary operator).

(58)

5.1 Symmetric Hyperbolic Systems

Using (53) we recast (29) into a form that eliminates the need for the commutator in the
semi-discrete case.

1 & 1 }
-1 _ -1 -1 Loy -1
(v “)t—é'?:l:((‘] B,u)6'+J B,ué,.) ~ 37 div(A)u + JTUF (59)
where o Y 94 54
Bi=0¢&- A axlA‘ + C%2}12 div(4) =98 A 0.t 7e

The boundary conditions are as in (29), except at the origin, where we require that
the characteristic boundary conditions ¢;(0,t) = S(0)¢11(0,%) be satisfied for ¢(0,¢) =
QT(0)u(0,t), 7 = 1,2, where Q7(0)A;(0,¢)Q;(0) are diagonal, which means that two
boundary conditions are prescribed at the corner. This situation occurs for the Euler
equations at corners, where it is natural to require that both normal components of the
velocity field be zero. Furthermore, this assumption simplifies the computations that
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follow. The projection operator is still well-defined. It should be pointed out that the
boundary condition at the origin is only used for the semi-discrete system.

Eq. (59) is discretized as

(17%),= 7

2
> (D:iJ7'Bw+ J 7 B.Div) - %J'ICU + J‘1F> (60)

i=1

RO | =

with
div(A)(z(0,0),1)

C =
div(A)(z(1,1),¢)

Proposition 5.1 The approzimation (60) is strictly stable.

Proof:
The energy method yields (using P(J"'v) = J™'v, PJ™! = J7'P = Pv =)

d 2
- = Z ((’U, D,’J_IB,'U)h + (v, J_IB,'D,'U)h) — (v, J_ICv)h + 2(v, J_IF)h

i=1
But (using Bi(0,jh;) instead of By(z(0,jhz),t) and so forth to make the notation less
cumbersome)

(v, DyJ ' Byv)y =-—h2201v0J 10, 7h2) B1(0, jho)ve; — (Dyv, J 71 Byo)y,

Since diagonal scalar products are used, assumption 2.1 holds a fortiori. Hence, (B =

_BY)
(Dyv, J ' Byv), = (B1J ' Dyv,v)p = (J7' By D1v,v)y

where the last equality follows since B; and J~! commute. Thus,

(v, D1 J ' Byv)y = —hQZaJUOJ 10, 7h2)B1(0, jho)ve; — (J ™' BiDyv,v),

with a similar relation for (v, DJ ™' B,v),. We thus arrive at

d

a(’v h S _hZZUJUOJ 0]h2)31(0 ]hg)‘l)oJ

—hl Z 0’,"03(;.]_1 (ih], O)Bz(lhl, 0)’0,‘0
=0

+(Idiv(A)leo + 1){v,v)n + (F, F)
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By means of (52) it follows that

- 0z, (9371
1

= — ——A
J B1 )52 Al 562 2

Apparently, z¢, 1s a tangent vector of the curve z(0,¢;). Hence
( Oy 0y )
06 0&

is an outward normal to z(0,&;) € I'. The unit normal is then defined as

. 0z, Oz
(7 nz)=(—a—€: 061)”%]

Using the definition of the arc length we then obtain

—h, ZO'J‘UD] 10, 7h2)B1(0, 5y )ve; = ZO'JSOJUOJ (n1A; + n2Az) vo,

=0

The boundary conditions are satisfied, whence
T A A & 12
Vo; (M1 A1 + nzAz) vo; < —7;voj

Letting v = inf(y;) > 0 implies

—hs Z chvOJ 1(0,7h2)B1(0, jha)vo; < =7 0;50i|vo;*
7=0
We have thus established

d

(.0 {0, 0 < (div(A)les + 1)(0, 0)a + (F, Fa

This is exactly the same estimate that one would get in the analytic case, and the propo-
sition has been proved. 0O

5.2 The Heat Equation

The heat equation in self-adjoint form reads

2 9 B¢,
(J71u) = ;l (J-‘ ai‘: (Z ai ))6 (61)

1=1
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At the boundary the normal derivative is set to zero. Define

0¢&;
5z, (z(0,0))

M,']' =

9;
a_x!(z(la 1))

and

2
D; =3 M;D;

i=1

Clearly, D; is a consistent approximation of 8/8z;. Let

061 -0
Lon, = —|06i|Lio— 516 27
acjl % (62)
L0n2 = —Ia§2|L20 - —W‘LIO
2

be approximations of the normal derivatives at the origin. The boundary projection P is

defined by (10) and (42) with Lo, replaced by either of Ly, and Loy, .

It should be noted that P may no longer be unconditionally well-defined. Arguing
exactly as in the proof of lemma 4.2 one obtains (using Loy = Lon,)

~ (10€:[*h2 + 01 - 021 ) 7 = 0
If 8¢, - 8¢, < 0, i. e., at acute corners there is a possibility of a non-zero v if

91 - 06

hy = -2
? R

(63)

Hence, at acute corners we assume that h; and h; be such that (63) does not hold.
Furthermore, lemma 4.3 is valid for Loy, = Lon,, Loy, = Lon,- This is obvious if 8¢;-9, =
+|0¢,]|0&,|, because then Lo,, = £ Lon,. Otherwise, we obtain (44) where

06, - 06,
sl TEE ) [
651'652 |8§2! Y2 - 30
|04 |

1

which has a unique solution iff |0, - 9&;| < |0&1]]0€2].

The semi-discrete heat equation is now defined as

(J—lv)t =P i Dy (J‘lMik ('2 M,'ij’U)) (64)

1,k=1
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Proposition 5.2 Assume that the mapping £(Q) = I is locally isochoric at the boundary
in the sense of (58), and that the grid is orthogonal at the boundaries except at the corners.
Then (64) is strictly stable.

Proof:
Since the transformation is locally isochoric at the boundary we get Pv = v. Thus, the
energy method implies

d

2
a(v =2 Y (v, Ded " My Div)y

1,k=1

Summation by parts yields (v is assumed to have compact support)

d .
a(v o= —22’122011)01 J My Div)or — 2Zh1 ZUIUIO J ™' M2 Div)io
i=1 =0 =1 =0
2
-2 E (M,'kaU,J_ Div)h
1,k=1
Obviously,
2 2
S (M Dyv, J 7' Div)p = Y _(Div, Div)a
1,k=1 =1

Next we turn our attention to the boundary terms. We have

(9&: - 9&2)a
|01 o
The parenthetical expression is recognized as a discretization of the normal derivative

(cf. (54)). The other boundary is treated analogously. At {; = 0 we thus define a “normal
difference” operator D, through

2
Z(J-lMilDi’U)OI = Jo' |0 |o (|561|01(D10)01 + (D2U)01)
i=1

(96, - 06a)or )
FAMEES )‘”)

with a similar definition of D,, at £ = 0. From (52) it follows that J5'|061| = |z¢, |-
Hence,

(Dm”)ol == (|3§1|01(Dlv)oz +

d
'\

Using v = Pv and the orthogonality assumptions it follows that

2
U)h = 2(’0, Dnv)r -2 Z(D{U, D,‘U)h
i=1
(.D—,”U)O[ = —|8€1|0{L¥}U =0 (DnZU)IO = —|8£2|10L2T,v =0 { >0
At the origin we have
(Dn,v)oo =LY v=0 (Dp,v)0=LL v=0

On, Ony
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where LI, v vanishes because of the construction of P; L} v disappears since we have

" shown that Lo,, belongs to the column space of P (cf. proposition 4.2). Hence the
boundary sum is identically zero, which proves the proposition. 0

Remark: It would still be possible to prove strict stability, even if the grid were not
orthogonal at the boundary. To compensate for the loss of orthogonality it is necessary
to require that the grid be globally isochoric in a neighborhood of the boundary T.

5.3 General Parabolic Systems

When considering parabolic equations in general, tangential derivatives may appear in the
boundary integrals, potentially calling for integration by parts once more. The occurrence
of tangential derivatives depends on the coefficients of the original equation, the geometry,
and the presence of mixed derivatives. These criteria are not independent of one another.
The following simple example will illustrate this interdependence. Consider the parabolic
model equation

U = Ugyzy + Usyzy + Uzpz, 2 €S (65)

where  is diffeomorphic to the unit square; the boundary conditions are yet to be spec-
ified. The energy method gives (the cross term is integrated with respect to ;)

d
EHqu = 2,/1“(1“1" + nyutg, )ds — 2'/;1(11,71%l + Uz, Uz, + Ug,yUg, )T

The normal and tangential derivatives are defined as

9 _ o0 4 o9 _ 0. 0
on nlaxl n25:82 oz, ™ n+T1 T
=
P ) 6 _ 0. 0
or laxl 28:1:2 0z, nzan Tzar

where n is the outward unit normal as usual; the unit tangential 7 is chosen corresponding
to a positive orientation of I'. Thus

T = —N9
T = m (66)

If, on the other hand, the cross term is integrated with respect to z,, we obtain
d 2
a“u” = 2/1‘(uun + nauu,, )ds — 2_/!;(1%,%1 + Up Uz, + Ugy Uy, )dT
We must show that

/nluumds =/n2uu,1ds (67)
r r
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in order for the energy method to be well-defined. Using the definitions above gives

/nluuxzds = /(nlnguun + nimuu, )ds
r r

/Fnr_,uurlds = /(n1n2uun + nomuu, )ds
r
Clearly, (67) will follow iff
/nlrguufds =/n27'1uu7ds
r r

From (66) and n? + n3 =1 it follows immediately that

/anguufds =/ngrluqus—-/uu,ds
r r r

Note that the second integral of the right hand side would vanish identically if I' were
smooth. To simplify the analysis it will be supposed that u is supported only in a neigh-
borhood of the lower left corner. Hence, it will be sufficient to consider the boundary
portions I'; and I'; corresponding to {; = 0 and {; = 0. Parametrizing I' in the positive
direction gives (cf. (54))

_lp L
./Fuufds— 2/1 (W), dEs + 2/0 (u?)e,d6&s

Letting {; — —&; in the first integral of the right member gives (9/0¢; — —03/0¢,,
dé, — d&3)

1 so 1 1
/ruu,ds =3 /_l(u?')szd& + 5/0 (u?)e,dér =0
and (67) follows. The energy method is thus well-defined, and we have
d
ZIl? <2 [((1+ mama)uun + nduur)ds = (|fuay P + lluz,]7)
The quantity n? is discontinuous at the corners. Define the jump discontinuity

[n1](z) = nip(z) — niL(2)

where n?p(z) and n3; () are the left and right limits of n? at = (according to the positive
orientation of I'). Straightforward computations show that

1 ¢ 1
/anuu,ds =3 > nfl(z)u* (e, t) — 3 /r(nf)ftﬁds

=1

where z.;, 2 = 1,...,4 are the corner points. Thus,
d 2 2 2 2y 2 2 2
Il < X[z ) + /r (201 + nang)unn — (n3)ru?) ds — (Jfug, | + [fue, |[?)
1=1
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From this inequality it is obvious that giving Dirichlet data at the corners and Neumann
data at the remaining boundaries would yield an energy estimate. In fact, we could even
allow inhomogeneous Dirichlet data at the corners and still obtain an energy estimate in
terms of the data. The effect of the corners disappears iff [r?](z) = 0, which happens iff

(i) ni(z) = mr(z)

(i1) nip(z) = —nir(z)

The first case implies that the normal is continuous, i. e., z is not a corner point. The
second case is more interesting, since the normal is discontinuous, but the effect on the
energy estimate disappears. This illustrates how the geometry can interact with the cross
terms. The simplest example is obtained by solving (65) on € being the square with (1,0),
(0,1), (=1,0), and (0,—1) as vertices. Evidently, the second case holds at the corners,
and no corner values should appear in the energy estimate. This can also be seen by a
change of coordinates:

1
2 = 75
Eq. (65) is then transformed into
3 1 1 1 1 1
U = 5uab + g Ul € (_ﬁ’—\/_ﬁ) X (_%’ﬁ)

The cross term has vanished; instead the equation has become anisotropic. Working in
this coordinate system it is apparent that no tangential derivatives — and consequently
no point values — will appear when deriving the energy estimate.

S D
1 = \{5331 \/5332
V2

To solve (65) by means of finite difference methods it is rewritten in self-adjoint form:
2
(J7), =3 (- (1 +n{nfY) a6 Bu)f +Z 1)t (nf® 1>u€‘)£k (68)
k=1 k1

where n¥) = —9€,/|0&|. This equation is discretized in space the usual way. The cross

terms .
k
(=1)' (nnfue, ),

must be integrated twice to eliminate the tangential derivatives. In the semi-discrete case
this amounts to performing summation by parts twice, the second of which will require the
introduction of a commutator, thereby obliterating strict stability (except for the second
order accurate difference operator). To restore strict stability it would be tempting to
reformulate the critical terms in skew-symmetric form:

k) (k T/ ) I k) (k 1/ &
P = 1 (an)+ L — L (an®)
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Doing so, however, would introduce lower order energy terms {, }», whose presence would
destroy strict stability. The simplest way to resolve this ambiguity is to assume homoge-
neous Dirichlet data, in which case the boundary terms vanish identically, and (68) would
be the preferred choice. The choice of homogeneous Dirichlet data to eliminate the influ-
ence of the mixed derivatives arises naturally when solving the Navier-Stokes equations,
since at solid boundaries we have zero velocity, and since the cross terms involve only the
velocity components.

We now turn to general parabolic systems subject to homogeneous Dirichlet conditions.
For general domains {2 eq. (46) is written as

2 2
(') = 3 (J_I%Aiju%) — S N iv(Aj)u,, + JTIF z€Q
b=t Z g 5=t (69)
u(z,0) = f(z)
u(z,t) =0 zel

where div(A;) = (Ayj)z; + (Az2j)z,. Define C; = div(A;). The semi-discrete system is
then given by

2 2
(J~l), = ( ST DI My A D =S J7CiDv + J-IF) (70)

t,5,k=1 =1
The projection operator P represents the homogeneous Dirichlet conditions.

Proposition 5.3 The approzimation (70) is strictly stable.

Proof:
Left to the reader o

6 Inhomogeneous Boundary Conditions

The principle for handling inhomogeneous boundary data is best illustrated by means of
a simple example. Consider the one-dimensional advection equation

us +u, =0 z € (0,1)

u(z,0) = f(x) (71)
U(O, t) = g(t)
The corresponding semi-discrete system reads
0 g
v+ PDv = (I- P)j _ 1 . | &
v(0) = f b= 3 =1 (72)
1 gy
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where g;, j = 1,...,v are to be determined later. Obviously, vo(t) = g(t) if fo = ¢(0)
(cf. proposition 2.4). The boundary condition is thus fulfilled at all time. According to
proposition 2.4 one has v = Pv+ (I — P)§j <= (I — P)(v— g) = 0. Hence, the energy
method gives

Dz = 200 = (7~ P)g, Do) + 200, (1 = Pl
Subtracting 2(§, v¢)» from both sides we get
2(v — g,ve)p = =2(v — §, Dv)p — 2(g,ve + PDv — (I = P)ge)n + 2(v — §,(I — P)gu)n
Using (72) and (I — P)(v — §) = 0 shows that
2(v —§,ve)n = —2(v — g, Dv)a

o 20— § (v = §))n = —2(v — §, D(v — ) — 2(v — 3 3¢ + Di)s

If § solves the auxiliary problem
g+Dg=20

3(0) = f (73)

then
d

Sl =3l = =2(v =3, D(v = §)) = (vo - 9)* = (v = 9,)* < 0

since vg = ¢. Thus,
lv(®) = §(&)lIn < |lv(0) = g(0){|» =0

Consequently,
o) =§(t), 20

If § satisfies (73) we get the energy estimate
L1911z = ~2(3, D3 = " - o
Hence,
t t
3@+ [ g2(r)dr = 11 + [ g*(r)ar
Finally, v = ¢ implies

@I+ [ vir)dr =111 + [ *(r)dr

which is identical to the continuous estimate.

It remains to be verified under what circumstances g solves the auxiliary problem (73).
Let §=(g0 g1 -.- g )7 be the solution to (73). Hence

Dig0y=Df j=0,1,...
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and

8§ . . .
T L4 (1) Dig=0, t>0, j=0,1,...
i.e., for t = 0 we get the compatibility conditions
&g , . _
—(0 —1yY*Dif =0, =0,1,...
5 0+ (=1) f j

Thus, if we require that the initial-boundary data f and g satisfy

@(O)Jr(—l)j“(pif) =0, j=0,1
3t1 0— Yy J =Y, 1,...
it follows that 5 5

9. _ P90 -

(9t3(0)_ 8t]' (O) J—O,lv"-

By virtue of being the solution to (73) go(t) is analytic in t. Hence, taking the boundary
data g(t) to be analytic these equalities imply that g(t) = go(t), t > 0, i.e., § = §, which
proves that § indeed solves (73).

In what follows we shall analyze the general case. Consider the ODE-system

(J~W), = PR(t,v) + (I — P)(J'g),

v(0) = f (74)

with J~! being the inverse Jacobian, and where
R(t,v) = G(t,v) + J'F(t), G(t,0)=0

This form arises naturally when discretizing a non-linear PDE in space; § represents the
boundary data, and F is the forcing function; G(¢,v) is the discretization of the differen-
tial operator. It should be pointed out that most operators G occurring in practice are
autonomous, 1. e., G = G(v). We use the tilde notation to emphasize that § is only par-
tially determined, that is, some components are determined by the boundary data of the
underlying PDE; the remaining components are unknown. It is no restriction to assume
that = ( go ... g, )T with g;,2=0,...,5 being the known components. Otherwise,
g could be brought to this form by permuting the dependent variables appropriately. As
usual we require that P and J~! commute, which is true if the grid is locally isochoric at
the boundary. Next, we define the auxiliary problem

(J ) R(t, w)

75
w(0) = (75)
Any solution to (75) will satisfy

dJ

dti (‘].1 ) = R;(t,w), j=0,1,...
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where R; is defined recursively by

_ OR;,
T ot

(t,w)+ ——

Consequently, at ¢ = 0 we have

jTjj (J-lw) (0) = R;(0,f), j=0,1,...

Assumption 6.1 The boundary data g;(t),: = 0,...,s, the initial data f, and the forcing
function F satisfy the compatibility conditions

&, . .
E(J §).(0) = (R;(0,);, i=0,....s, j=0,1,...

If R is sufficiently well-behaved, in particular if G is linear and autonomous, then w(t) will
be analytic for 0 < ¢t < T. Thus, if we require that the boundary data ¢;(t),: =0,...,s,
be analytic it follows that

gi(t) = wi(t), ¢=0,...s

Furthermore, the unknown components g;, ¢ > s are of course taken to be
gi(t) = wi(t), i>s

Hence, § = w solves (75).

Remark: It suffices to consider g; piecewise analytic, since the process can be repeated
at t = t;, where ¢, is the critical time when analyticity is lost.

Proposition 6.1 Let v be the solution to (7{) and suppose that assumption 6.1 holds. If
the boundary data g;, 1 = 0,...,s are piecewise analytic, then

('U - gv(v - g)f>h = (’U - g,G(t,’U) - G(t’g))h

Proof:
Using (74) and Pv = v — (I — P)g, which is true since P and J~! commute, it follows

readily that
(U’ vi>h = (’U - ga R(tvv))h + (ga PR(t,’U))h + (Uv (1 - P)(J_lg)f)h
Hence,

('U - §, Ut)h = (v - gs R(tav))h + (g’ '—(J-lv)t + PR(t’ v))h + (Uv (1 - P)(J—lg)t)h
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or, using (74),
(v=g,v)n = (v =g, Rt 0)u+ (v=§,(I = P)(J7'@)e)n

But
(v=9,(I=P)J ' =(I—-P)v=9),(J'@))r=0

and so
(U - g»vt)h = (U -9, R(ta U))h
which in turn is equivalent to

(v =3,(v=9)e)n = (v =3, R(t,v) = R(t,9)n — (v = 3, (J7'§)e — R(£,§))a

The assumptions on ¢ imply that (J='g), = R(¢, §), which proves the proposition. O

6.1 One-Dimensional Parabolic Systems

We consider the parabolic system (27) with the lower order terms omitted, i. e.,

uy = (Aug) + F
ul(2,0) = 1 =) (76)
Lou(0,t) 4+ Liu,(0,t) = g(t)

The omission of lower order terms is done for convenience only. The boundary data g(¢)
is assumed to be piecewise analytic in ¢t. The corresponding semi-discrete system reads
v(0) = f

where § satisfies LT§ = g, with L given by (18). According to proposition 2.4 we have
(I — P)(v — §) or, equivalently, LTv = LT§. Thus

(77)

Lo’Uo + L](D'U)Q =g

which shows that the analytic boundary conditions are satisfied to some order of accuracy.
Proposition 6.2 Suppose that assumption 6.1 holds. Then (77) is strictly stable.

Proof:
We know that § solves the auxiliary problem

e =G(t,9) + F(t)
(0) =171

Qe
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where G(t,3) = DADg. Proposition 6.1 then yields (using J = I)
(v=3,(v=3))s = (v — 3§, DAD(v — §))n < —(vo — go)TA(D(v — §))o — 26||D(v — )
Since LT (v — §) = 0 it follows that

Lg'(vo — go) = 0

Furthermore, decompose v; — g; = (v; — ¢}) + (v} — g}), where v}, g} € ker(L1), vl g €
ker(LT)*. According to assumption 3.1 we then obtain

(v =3, (v = @)e)n < —(v0 = 90) A(D(v" - §"))o — 28| D(v — 9)]I;
Arguing exactly as in the proof of proposition 3.2 gives
(D(v" = §"))o = —L7" Lo(vo — o)
1. e.,
(v =, (v = §))n < vlvo = gol* = 26||D(v - )
By means of the Sobolev inequality 2.6 we thus arrive at

(v—=39,(v = §))n < (a+ O(h))|lv - §lI7

Hence

[lo(®) = §@)lls < e Jo(0) = §(0)]]» = 0
which is equivalent to v(¢t) = §(t), t > 0. To get the final estimate we consider the
auxiliary problem. One obtains

d,. . ) )
S 19112 < —205 A(Dg")o — 481D3ll + lIg11% + |71

Now
Logo + L1(Dg")o = g
and so
(D§")o = —L7" Logo + Li'g
Thus

—297 A(D§")o = 298 ALT' Logo — 294 ALT g < 7|g0)* + ||

where the algebraic inequality 2zy < ez? + €¢~'y? was used. This leads to

d, . . .
1113 + 190" < (v + Dlgol* — 4811DGIIE + IgIIE + lgl* + IIFIL3

The coefficients of this estimate are exactly the same as those of the corresponding analytic
inequality. Using § = v and eliminating the boundary terms of the right member by means
of the Sobolev inequality yields

d
IR+ [vol* < (o + ORI + Il + 1I£11
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where a is the same constant as in the analytic estimate. Finally, integration with respect
to time results in

o1+ [ o) e < @ (1712 1 [* (o) + 1F()IE) dr )

which is the desired estimate. O

Remark: The boundary conditions are used twice — first in conjunction with propo-
sition 6.1 to show that § = v, and second with the auxiliary problem to get the actual
estimate.

6.2 Two-Dimensional Symmetric Hyperbolic Systems

We consider (the lower order terms are omitted for convenience)

l 2
(77), = 3. Z (( “Ba)_ + J_lBiuf,) +JF (78)
where 9 5
Bi=d6 A= %4, 4 Py,
33:1 6.732

The boundary conditions are given by

ei(z,t) = S(z)en(z,t) + g(z,1)

where (o designates the characteristic variables corresponding to the locally ingoing char-
acteristics; S(z) is assumed to be sufficiently small. At the corner z(0,0) we require
that

991(1'(0’0)’” = S(.’E(O,O))L,OU(:I:(O,O),t) + g(a:(0,0),t), L,O(;B(0,0),t) = Q?u(x(0,0),t)

be satisfied for 7 = 1,2, where Q?(ngi)Al (2(0,0), t)+ngi)A2(x(0, 0),t)Q; are diagonal; n(9,
¢ = 1,2 are the two normals associated with the corner z(0,0).

At each discrete boundary point z;; = z(ih1,jh2) € I' the boundary conditions are
formulated as
L(zij)vi; = g(zij,t), @55 €T

where L(z;;) is given by (32). We note that there are two operators L;(zoo) corresponding
to the two different normals n(9) at zgo. Since L(z;;) has full rank it follows that there
exists a §;; such that

L(zi;)gi; = 9(zi55t), zi; €T
Hence, the boundary conditions are

L{zi;)(vi; — §i;) =0, =z €T
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or, in global form,
LT(v=3)=0

where § is partially determined by the boundary data. Eq. (78) is discretized as

(77), =P (% S (D7 Bew + J7 BiDw) + J7F ) HI=PET)

=5

where P is the orthogonal projection corresponding to the global operator L7,

1=

_ Proposition 6.3 Suppose that assumption 6.1 holds. Then (79) is strictly stable.

Proof:
By assumption 6.1 § solves the auxiliary problem

(77'9), = G(t,9) + J'F(2)

where ,
G(t,g) = ';‘Z (DiJ_lBig + J—lBiDig)

=1

Hence, according to proposition 6.1 we have

b —

(0 =8,(0 = =53 (v =4, (DiJ7'Bi+ J7'BiD;) (v — )

Summation by parts yields
1

(’U —ga(v '—g)t)h = E(U _ga (nlAl + n2A2) ('U —§))r

- But LT (v — §) = 0, whence v — § satisfies the homogeneous boundary conditions. Conse-
quently, (cf. the proofs of propositions 3.1, 4.1, 5.1)

(v —3,(n1A1 + n2As) (v —))r < —ylv—glF <0

Thus, §(t) = v(t),t > 0.

In the second part of the proof we apply the energy method to the auxiliary problem.
Straightforward computations show that

d  _ . N . .
—{§,9)n = {§, (n1A1 + n2A2) @)r + 2(g, F)n

Take an arbitrary point zo; on the boundary portion where £ = 0. We must analyze the

quadratic form
~ 1 1 ~
ga; (n{VAr + nf )Az)oj go;
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We know that LT§ = g, where g is the vector representing the analytic boundary data.
Define ;; = Q7 (z;;)d:;- Hence,

(wis)1 = S(eij)(pis)1r + 945 (80)
and the quadratic form is transformed into
fl(r)rj (n1l)A1 + 71 Az) J.flo;’ = LPOTJ-AonOOj
Using (80) gives (omitting the spatial subscripts for simplicity)
oTAp = ol (Aur + STALS) w11 + 2¢7;STA1g + g" Arg
It is assumed that Aj; < —v at zq;. For sufficiently small S we thus get
v
T Ap < —§|9011|2 + (1 + A Lgl?
Now, |1 < [S|lerr| 4 |g]. Hence
TA 1 2 « _1 2 1 2 A 2 3 A 2
"o+ Lol < ~Tlouf + Tipi + (14 [Arl) ol < 3+ Adl) ol

for S small enough. It should be underscored that this is exactly the same estimate one
gets in the continuous case. At each boundary point z¢; we have thus established that

% (n 40+ n42) oy + 2 1g0sl? < (34 1(A0s)1]) loos

with a similar expression at points x;o corresponding to {; = 0. Letting inf(y;;) =+ >0
we thus obtain

jt(g gty < 9)r < 3+ |Aleo) (95 9)r + 2(g, F)n

Finally, identifying v = §, integration gives the energy estimate

(O + [ ) o(rlirdr < Ke (179 + [ Galrhatle + (P, Fr ) ar)

which proves the theorem. ]

Remark: Because of the terms ©7;STA;g+ g7 Arg the constant K of the energy estimate
will in general satisfy K > 1, even if no estimate of the boundary terms (v, v)r is wanted.
For ¢ = 0, i. e., homogeneous boundary conditions, the critical terms disappear, and one
may take K = 1 in case no boundary estimate is needed (cf. the remark following the
proof of proposition 3.1).
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7 Summary and Conclusions

We have demonstrated that for a given finite-dimensional scalar product (:,)s any linear
discretized boundary condition can be written as an orthogonal projection operator P that
satisfies (u, Pv), = (Pu,v)s. It should be noted that the projection is well-defined if the
corresponding analytic problem is well-posed. For general boundary conditions one may
also have to require that the discretization parameter A be small enough (consistency).
The projections P , the summation-by-parts property, and proposition 2.4 constitute the
main tools needed to obtain an energy estimate for the semi-discrete case. For a large
class of problems it has been established that existence of an energy estimate for the
continuous problem implies ditto for the semi-discrete system.

In one space dimension we are no longer required to consider restricted full norms

1
(1)

which were used in [4] to prove stability for symmetric hyperbolic systems subject to
homogeneous boundary conditions. The main result is the stability proof for mixed
hyperbolic-parabolic systems subject to general linear boundary conditions. Assuming
certain compatibility conditions the result holds for inhomogeneous boundary data. Re-
formulating the analytic problem it is possible to obtain strict stability, i. e., we have
a time stable semi-discrete approximation that is bounded by the the same exponential
growth rate (modulo O(h)) as the analytic problem. For the parabolic part the excess
growth rate is induced by the discrete Sobolev inequality. Furthermore, for the hyperbolic
part we have used assumption 2.1. In particular, strict stability is obtained for diagonal
norms and variable coefficient problems, and for general norms and constant coefficient
problems. The stability results hold for finite difference approximations of arbitrary order.

In two space dimensions we are forced to consider diagonal norms in order to get
summation by parts in both dimensions. Stability of high-order schemes is obtained for
general mixed hyperbolic-parabolic initial-boundary value problems. Again, inhomoge-
neous boundary conditions are allowed, provided certain compatibility conditions prevail.
Using a different norm we obtain strict stability for symmetric hyperbolic systems on
non-smooth curvilinear domains, where we allow for general inhomogeneous boundary
conditions. As for strict stability of parabolic systems, we are limited to homogeneous
Dirichlet data. Mixed derivatives and/or variable geometry may account for “tangential
differences” that in general cannot be eliminated without ruining strict stability. An ex-
ception is the standard second order method. The requirement that the Dirichlet data
be homogeneous is already necessary for the continuous problem. All results obtained for
two dimensions generalize to higher dimensions.

The methods presented in this report are similar to finite element methods in that
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stability for the semi-discrete system follows more or less directly from the corresponding
continuous one. There is, however, one major difference: The FEM technique often results
in implicit space discretization, whereas the discretized space operators reported in this
paper always are explicit.

There are other ways of imposing boundary conditions so as to ensure time stability
(strict stability) when using difference operators satisfying a summation-by-parts prop-
erty. An elegant technique is proposed in [1]. A so called Simultaneous Approximation
Term, SAT for short, is added to the semi-discrete scheme. The SAT will act as a penalty
function to enforce an approximation of the discrete boundary conditions. In [1] this
approach is used to prove time stability for high-order finite difference approximations
of one-dimensional constant coeflicient hyperbolic systems. Also, it is not necessary to
consider identical difference stencils in the interior. A new and interesting class of such
difference operators can be found in [2].

Acknowledgment

The author wishes to thank Prof. Joseph Oliger for many stimulating discussions on the
topics of this paper.

37



8 Appendix

Let P be defined by proposition 2.5 with L given by (42) (x = 0.5) where h; = hy =1
for convenience. We shall show that LT,P = 0, which will follow if we can prove that
CLLEL(LTE L) LT = LY. Straightforward computations show that

Dll D12 D13
LT 'L = DY, Dy Dy
Df; D}; D

where

1 dor
o oy
Dy =Dsz=« D12=D;T3=T_1 :
1 dOr
o o,
and -

D3 = 7°Dy3Da3 D22=%(£+ﬁ§) K=Z% T=@
o0 O¢ o Ok doo

The inverse is given by

Thw Ty Ths
(LTE'L) ' = | TL Ty Tas
T TL Ty

- with H
Ty =Tss = Dy + . UDl_ll Dy, D}, DY}
4
T :TT= —(,LL—O'T) -1
RBTIBT (0 o)1 - 072)D11 Dz
2
- - -
Tio =T = T g1 — o7y Dt PPl
(k= or)(1 + o7)
Tz, = 2
(T = po)(1—or?)
and

g = D{2D;1;D12

2
=i+ = (1 —o7?
p=or +1/( 0'7')
V:DQQ—O'

Obviously, v is the Schur complement of D,;. Let L be defined by (40). Then
T v-1 Ty -1 -15T T -17 R S 1T
LicZ ' L(L'EL)y L =L, XL s R L
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where (using 7%, = Ta3 and Ty = T33)

| T/t TS)2 [ T/t TL)2
R = S =
TIZ/2 Tll TIZ/2 T13

Furthermore,

LIe L = ( klog 0 diy/o2 2DT, )
Using Dyy = (/00 + d%y/02)/2,

;R S
LITOEIL(S R):

1 1
( §D22T22 + Dngle DyoTL +2DT, Ty §D22T22 + D?;;le Dy, TE + 2DL. Ty, )

But
1 1 1
§D22T22 + Df,Typ = §(D?2T12 + Da2To2 + DasTyy) = 3

and
D22T1721 + 2D?2T13 - 2 (D’{;Tlg + ngTIT; + DT2T11) - (ngTg + 2D’{2T11)

Observing that Tf; = Tha, DszTn = Dy3T33 it follows that the first parenthetical expres-
sion vanishes. Thus,

R S

L{@‘%( s R

1 1
) = ( 5 D22T£ + 2D?2T13 "2' - (D22T17; + 2D1TQT13) )

Also,
20(s =) = (0 + v)(u = o7
(1= o)1 = o7)

Substituting 1 — 072 = d%,/(k00) and the expression for x yields

DaeT{y + 2D}, Tis = pD3, DY p =

KOp
p=——0
o
and so .
pD, DY = " 2dug ( dor ... dor )
Consequently,
1 .
LIS L(LTs L) LT = (doo —dor ... —dor doo doy ... do, ) LT
2dgo
The j th block column of LT reads
cjrz ( 0 ... 0 ZdOkeZ 0 ... 0 dgjeg dojerT )
k=0
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where the sum is the j:th block element of ¢;, 7 = 0,...,r. Hence,

1
m(doo —doy ... —do, doo do

1. e.,

[T-'L(L72 L) LT = LT,

In a similar fashion one shows that Lo also satisfies the above equation.

d()r ) ¢ = 5]'0 Z doke{

k=0

The simplest example is obtained by discretizing the Neumann conditions using the
standard divided difference D, in both coordinate directions, i. e.,

vi1 —vor =0
v — v =0

(vio — v00)/2 + (vo1 — voo)/2 =0

which leads to

[ 16 —4 0

-2 14
0 00
1 0 00

-1 Ty-17y-17T7 _ *

TLLTETL) T = | Ly g
-2 —4 0
0 00
\ 0 00

oo

0

o O

0

o O

0

(81)

_ Evidently, any vector v= Pu, P = [ — Z7'L(LTE"1L)"' L7, satisfies (81). Furthermore,

by (82), vio — voo = vo1 — veo = 0, which also follows directly from (81).
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